Coordination of aminoborane, NH(2)BH(2), dictates selectivity and extent of H(2) release in metal-catalysed ammonia borane dehydrogenation.

نویسندگان

  • Vincent Pons
  • R Tom Baker
  • Nathaniel K Szymczak
  • David J Heldebrant
  • John C Linehan
  • Myrna H Matus
  • Daniel J Grant
  • David A Dixon
چکیده

In situ(11)B NMR monitoring, computational modeling, and external trapping studies show that selectivity and extent of H(2) release in metal-catalysed dehydrogenation of ammonia borane, NH(3)BH(3), are determined by coordination of reactive aminoborane, NH(2)BH(2), to the metal center.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transition metal catalysed dehydrogenation of amine-borane fuel blends.

Mixtures containing ammonia-borane and sec-butylamine-borane remain liquid throughout the hydrogen release process that affords tri(N-sec-butyl)borazine and polyborazylene. Concentrated solutions with metal catalysts afford >5 wt% H(2) in 1 h at 80 °C and addition of (EMIM)EtSO(4) ionic liquid co-solvent eliminates competing formation of insoluble linear poly(aminoborane) (EMIM = 1-ethyl-3-meth...

متن کامل

Transition metal catalysed ammonia-borane dehydrogenation in ionic liquids.

Significant advantages result from combining the disparate hydrogen release pathways for ammonia-borane (AB) dehydrogenation using ionic liquids (ILs) and transition metal catalysts. With the RuCl(2)(PMe(3))(4) catalyst precursor, AB dehydrogenation selectivity and extent are maximized in an IL with a moderately coordinating ethylsulfate anion.

متن کامل

Mechanistic investigation on the formation and dehydrogenation of calcium amidoborane ammoniate.

Possessing high H(2) capacities and interesting dehydrogenation behavior, metal amidoborane ammoniates were prepared by reacting Ca(NH(2) )(2) , MgNH, and LiNH(2) with ammonia borane to form Ca(NH(2) BH(3) )(2) ⋅2 NH(3) , Mg(NH(2) BH(3) )(2) ⋅NH(3) , and Li(NH(2) BH(3) )(2) ⋅NH(3) (LiAB⋅NH(3) ). Insight into the mechanisms of amidoborane ammoniate formation and dehydrogenation was obtained b...

متن کامل

The dehydrogenation of ammonia-borane catalysed by dicarbonylruthenacyclic(II) complexes.

The reactivity of ruthenacyclic compounds towards ammonia-borane's dehydrogenation was investigated by considering both hydrolytic and anhydrous conditions. The study shows that the highly soluble μ-chlorido dicarbonylruthenium(II) dimeric complex derived from 4-tert-butyl,2-(p-tolyl)pyridine promotes, with an activation energy E(a) of 22.8 kcal mol(-1), the complete hydrolytic dehydrogenation ...

متن کامل

Probing the second dehydrogenation step in ammonia-borane dehydrocoupling: characterization and reactivity of the key intermediate, B-(cyclotriborazanyl)amine-borane.

While thermolysis of ammonia-borane (AB) affords a mixture of aminoborane- and iminoborane oligomers, the most selective metal-based catalysts afford exclusively cyclic iminoborane trimer (borazine) and its B-N cross-linked oligomers (polyborazylene). This catalysed dehydrogenation sequence proceeds through a branched cyclic aminoborane oligomer assigned previously as trimeric B-(cyclodiborazan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Chemical communications

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2008